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Kinetic roughening on rough substrates
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(Received 14 May 1997

We study the kinetic roughening described by a linear diffusion equation on an initially rough substrate. We
show analytically that it is not possible to write a general scaling relation valid for rough substrates. However,
for a particular substrate generated by the same linear growth process, we can write a scaling relation similar
to the relation valid for flat substrates, with the same growth and roughness exponents. Numerical simulations
in a solid-on-solid model with surface relaxation, fib=1, supports the scaling relation and the exponents.
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Kinetic roughening in nonequilibrium surface growth is a f(t/L?) ~(t/L?#, where B=alz is the growth exponent.
problem that has been extensively studied in the past decadéen the roughness has the dynamical behawidrlL)~t#
[1-6]. Some experimental examples are the fluid-fluid interfor short times. Fot>L?, the functionf(t/L%) = const and
face in porous mediurfi7,8], paper wettind9], propagation w(w«,L)~L®*. In this limit, the interface has a self-affine
of flame fronts[10,11], fractures[12], molecular-beam epi- character.
taxy [4,13], and growth of bacterial cell coloni¢44]. The In a growth process where the lateral growth is important,
standard theoretical methods for treating these problems athe A term in Eq.(1) dominates. In that case, the relation
continuum equation$15,16, scaling concept§l?7], and a «+z=2 is valid for all dimensions and the exact solution is
great variety of discrete mode]l47,18,25,19,2D known only for 1+1 dimensions, withw=1/2 and8=1/3.

A simplified yet nontrivial equation to describe kinetic On the other hand, if the term dominates, Eq1) reduces
roughening has been introduced by Kardar, Parisi, an@o a linear equation with exact solutiorz=2, a=(2
Zhang[16]. The heighth(x,t) of the profile in positiorx at ~ —d)/2, andB=(2—d)/4. All of these results are valid for a
timet evolves as flat substrate. However, as pointed out by Meak8],

h(xt) N growth from an initially rough substrate is probably more
2 & 2 common in nature. The growth in a disordered substrate was
at PVhx O+ 2 [VhOGOF+7(xt), (1) studied theoretically by Tsai and Shap1], while the for-

) . ) mation of a facet on an initially rough surface was investi-
where the first term is related to the surface relaxation, th%ated by Krug and Spohi22].

second simulates the lateral growth, antk,t) is a white In this Brief Report, we report analytic results of a linear
noise with zero mean and covariance given by equation in a rough substrate, with roughnegéL ), and we
(p(xt) p(x',t"))=2D &%(x—x") 8(t—t') ?) show that it is not possible to establish a general scaling

relation. However, for a particular substrate, we show that
where the angular brackets denote an average over noise hi¥2(t,L) —w(L) obeys a scaling relation identical to Hd),
tories andd is the dimension of the substrate. which is valid for flat substrates. We perform numerical
In 1985 Vicsek and Familyf17] predicted spatial and simulations in a one-dimensional model of the same univer-
temporal scaling properties for the interface of crystalsality class, the solid-on-soliEOS model with surface re-
growth. For a discrete interface bf sites, where the site  laxation[15,18. The results obtained validate the theoretical

has a heighh, , we can define the interface width, also called scaling relation.

roughness, as We consider Eq(1) with A =0, that is, the linear equation
1Y
.y ah(x,t
WALL)= o, (= N)2, 3 D wehix ) + mix). 5)

where h=(1/L% Sh; is the mean height. For a particle

deposition process in an initially flat substrate this roughnes;;-hIS equation has an exact solution and the roughness

behaves apl7] w(t,L) can be expressed 88,23
t d d i
W(t,L)~L“f(—), (4) 2 _ q q ,
LZ W (taL) J (Zﬂ)d (zw)dcq,q (t)1 (6)

where « is the roughness exponent amnds the dynamical
exponent. When &t<L?, the functionf(t/L?) behaves as where the correlatio€, 4 (t)=(h(q,t)h(q’,t)) is given by
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Cq‘qr(t) =

X (1—e2M9) | 59(q+q), (7)

with At=t—t,. For a flat substrat€, 4/(t;)=0 and the
roughness is given by

dqg
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w(t,L)= 1-e 219,
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This relation is identical to Eq@8) for flat substrates with
effective coefficientvo¢; defined as

1

Vett

1 1

14 Vo

. (15

Hence the same scaling relation is obeyed. Thendfell
the scaling relation valid for this kind of substrate is

_ DL

e

Vett

Sw? (16)

A similar scaling relation was obtained by Keszeand Wolf

Ford=1 this expression can be written in the scaling form for the Eden moddl24]. However, the Kertgz-Wolf relation

vt

2tL—DLf
W(')_V L2

. ©)

where, for smalk= vt/L?, we havef (x)~x*3w~t"4 and
f(x) tends to a constant for large(w~LY?). Ford=2, the
roughness has the logarithmic behavi@3] w(t,L)~ Int for
smallt andw(t,L)~InL for long times.

For a rough substrate we ha@, o (to) #0 and it is im-
possible to obtain a general scaling relation such as(8q.

depends of the intrinsic roughness of the model that is
independent, while in the present work the initial roughness
wo(L) grows withL.

In order to understand the above results we perform a
simulation with a model of the same universality class, the
so-called SOS model with surface relaxationdin 1. That
model was introduced by Edwards and Wilkindd], who
determined the exponents analitically. Fanjily8] obtained
numerical results that support the scaling relat{dh with
the same exponents. A sifeis select at random and its

for any initial substrate. For example, in an uncorrelatecheight h; grows one unit, that ish;—h;+ 1, provided that

growth proces$v=0 in Eq.(5)] the correlation is given by
Cq.q/(to)=(2m)Dtg (10)

and Eq.(6) cannot be expressed as a scaling relation.

the restriction on neighboring heighth;—h;.;<m is
obeyed at all stages. In this constraint, is a parameter
related to the coefficient. In case the constraint is violated,
the lowest neighboring site is visited until a local minimum

is reached. A substrate is generated by this process by using

Nevertheless, if the correlation function has the forma valuem, until a steady statet&L?) is attained. On that

Cq,q,(t0)~q‘2, then it is possible to write down a scaling
relation similar to Eq(9). A substrate with such a correlation
function can be generated by the same growth prodgsm

a flat substrate. In that case, we use a coefficignintil the
time is long enought&L?). Under these conditions, E(})
reads

(27)9D ,
Cqq'(to)= T(ﬂz(Sd(quq ) (11
By substituting this equation into E¢6) we obtain
o dq
Wi(L)= e 2
ZdVOﬂ_dIZF(E Cd

Therefore, once the process starts on a substrate generated
under those conditions, we find that the fluctuation in rough-

ness
ow?=|w?(t,L)—wj(L)| (13
can be expressed as
D 1 1((= d
(S\sz—___Jz _q(l_e72vtq2).
d\|v wvgl JET g3-d

zdwd/ZF(E) o’t(q

(14

FIG. 1. The log-log plots of the roughnesgt,L) as a function
of t for L=200. In both parts, we show the growth process in a flat
substrate fom=1 (lower curvg and form=5 (upper curvé On
the top roughening processes fram=1 to m=5 and on the bot-
tom smoothening processes fram=5 tom=1 are described. The
segments, b, c, andd show the behavior when we change the
parametem at timest=30, 300, 3000, and 3®O0, respectively.
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FIG. 2. The log-log plots of the fluctuation in roughne®s as FIG. 3. Plots oféw/LY? vst/L? for various values of. show-

a function oft in two process{(a) roughening(lower curve (in an ing the validation of the scaling relatidi6).

L =800 less rough substrate, generated with 1, grows a struc-

ture with m=5) and (b) smoothening(upper curve (in an L

=800 very rough substrate, generated wiik=5, grows an inter- good agreement with 2=0.48+0.02 for roughening and

face withm=1. 23=0.51+0.03 for smoothening, which indicatgd~ 1/4,
as expected. The validation of the scaling relatitf) can
be inferred from Fig. 3: Plots ofw/L? vs t/L?, for sev-

substrate another growth process will begin with anothefral values ot collapse on the same curve, which indicates
maximum height differencen#m,. The change in the pa- thatf(x) is L independent.

rameterm corresponds to a change in the coefficienfor I conclusion, we analyze the kinetic roughening on an
instance, a low value ah means a less rough substrate, that|n|t!ally rough Substrate. Throug.h a s.olut|on. of a linear _dn‘—
is, a higher value of the coefficient fusion equation we show that it is impossible to obtain a

Figure 1 shows log-log plots of the roughnes@,L) vs general scaling relation as such E®), which is valid for flat
time t for L=200. The lower(uppe) curves are, form  Substrates. Nevertheless, for a particular substrate generated

=1 (m=5). The segmenta, b, ¢, andd on the top de- by the same linear process but with a different coefficignt
scribe the roughening from=1 tom=>5 at different times. e can write down a similar scaling relati¢b6) which is a
The segments on the bottom describe the smoothening prg€neralization of Eq(9). It is possible to study analytically
cessesn=5 to m=1. We note that there exists a tendencyOther models that are related to a linear equation of higher
of the roughness to go quickly to the corresponding curve o r(_jer[1_9,2q and to obtaln_ similar results. N_umerlcal simu-
the new value ofn. Even for the smoothening process the 'ations in a SOS model with surface relaxation, where a dif-

segmenta shows a strong decreasing of the roughness angﬁrencem of height between neighbors is allowed, indicate
then it returns to the ascending curve. the correctness of th|s scaling relatlon._We also perform nu-

Figure 2 shows the absolute value of the fluctuations ofnerical simulations In a SOS model with refust] to see
roughnesssw vs timet for two growth processta) rough- the results of a nonlinear model on a rough substrate.
ening, a process witm=5 on a less rough substrate gener- We thank Joa Florencio, Jr. and Bismarck Vaz da Costa
ated withmy=1, and (b) smoothening, a process witm  for helpful criticism of the manuscript. This research was
=1 on a very rough substrate generated withp=5. For  supported in part by Conselho Nacional de Desenvolvimento
each one, we have generated 30 substrates and 30 grow@lientfico e Tecnolgico (CNPg and in part by Funda@o de
processes for each substrate. Hence we used effectively 9@nparo aPesquisa do Estado de Minas Gerdspemig,
samples. The results shown are lior 800. The curves are in  Brazilian agencies.
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