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Kinetic roughening on rough substrates

T. J. da Silva and J. G. Moreira
Departamento de Fı´sica, Instituto de Cieˆncias Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, 30123-970,

Belo Horizonte, Minas Gerais, Brazil
~Received 14 May 1997!

We study the kinetic roughening described by a linear diffusion equation on an initially rough substrate. We
show analytically that it is not possible to write a general scaling relation valid for rough substrates. However,
for a particular substrate generated by the same linear growth process, we can write a scaling relation similar
to the relation valid for flat substrates, with the same growth and roughness exponents. Numerical simulations
in a solid-on-solid model with surface relaxation, ford51, supports the scaling relation and the exponents.
@S1063-651X~97!09710-9#

PACS number~s!: 05.70.Ln, 68.35.Fx, 81.10.Jt
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Kinetic roughening in nonequilibrium surface growth is
problem that has been extensively studied in the past de
@1–6#. Some experimental examples are the fluid-fluid int
face in porous medium@7,8#, paper wetting@9#, propagation
of flame fronts@10,11#, fractures@12#, molecular-beam epi-
taxy @4,13#, and growth of bacterial cell colonies@14#. The
standard theoretical methods for treating these problems
continuum equations@15,16#, scaling concepts@17#, and a
great variety of discrete models@17,18,25,19,20#.

A simplified yet nontrivial equation to describe kinet
roughening has been introduced by Kardar, Parisi,
Zhang@16#. The heighth(x,t) of the profile in positionx at
time t evolves as

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@“h~x,t !#21h~x,t !, ~1!

where the first term is related to the surface relaxation,
second simulates the lateral growth, andh(x,t) is a white
noise with zero mean and covariance given by

^h~x,t !h~x8,t8!&52Ddd~x2x8!d~ t2t8!, ~2!

where the angular brackets denote an average over noise
tories andd is the dimension of the substrate.

In 1985 Vicsek and Family@17# predicted spatial and
temporal scaling properties for the interface of crys
growth. For a discrete interface ofLd sites, where the sitei
has a heighthi , we can define the interface width, also call
roughness, as

w2~ t,L !5
1

Ld(
i 51

Ld

~hi2 h̄ !2, ~3!

where h̄5( 1/Ld) (hi is the mean height. For a particl
deposition process in an initially flat substrate this roughn
behaves as@17#

w~ t,L !;La f S t

LzD , ~4!

wherea is the roughness exponent andz is the dynamical
exponent. When 0!t!Lz, the functionf (t/Lz) behaves as
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f (t/Lz);(t/Lz)b, where b5a/z is the growth exponent
Then the roughness has the dynamical behaviorw(t,L);tb

for short times. Fort@Lz, the functionf (t/Lz)5 const and
w(`,L);La. In this limit, the interface has a self-affin
character.

In a growth process where the lateral growth is importa
the l term in Eq. ~1! dominates. In that case, the relatio
a1z52 is valid for all dimensions and the exact solution
known only for 111 dimensions, witha51/2 andb51/3.
On the other hand, if then term dominates, Eq.~1! reduces
to a linear equation with exact solution:z52, a5(2
2d)/2, andb5(22d)/4. All of these results are valid for a
flat substrate. However, as pointed out by Meakin@3#,
growth from an initially rough substrate is probably mo
common in nature. The growth in a disordered substrate
studied theoretically by Tsai and Shapir@21#, while the for-
mation of a facet on an initially rough surface was inves
gated by Krug and Spohn@22#.

In this Brief Report, we report analytic results of a line
equation in a rough substrate, with roughnessw0(L), and we
show that it is not possible to establish a general sca
relation. However, for a particular substrate, we show t
w2(t,L)2w0

2(L) obeys a scaling relation identical to Eq.~4!,
which is valid for flat substrates. We perform numeric
simulations in a one-dimensional model of the same univ
sality class, the solid-on-solid~SOS! model with surface re-
laxation@15,18#. The results obtained validate the theoretic
scaling relation.

We consider Eq.~1! with l50, that is, the linear equation

]h~x,t !

]t
5n¹2h~x,t !1h~x,t !. ~5!

This equation has an exact solution and the roughn
w(t,L) can be expressed as@6,23#

w2~ t,L !5E dq

~2p!dE dq8

~2p!d
Cq,q8~ t !, ~6!

where the correlationCq,q8(t)[^h(q,t)h(q8,t)& is given by
4880 © 1997 The American Physical Society
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Cq,q8~ t !5Fe22nq2DtCq,q8~ t0!1
~2p!dD

2nq2

3~12e22nDtq2
!Gdd~q1q8!, ~7!

with Dt5t2t0. For a flat substrateCq,q8(t0)50 and the
roughness is given by

w2~ t,L !5
D

2dnpd/2GS d

2D E2p
L

` dq

q32d
~12e22ntq2

!. ~8!

For d51 this expression can be written in the scaling for

w2~ t,L !5
DL

n
f S nt

L2D , ~9!

where, for smallx[nt/L2, we havef (x);x1/2(w;t1/4) and
f (x) tends to a constant for largex (w;L1/2). For d52, the
roughness has the logarithmic behaviors@23# w(t,L); lnt for
small t andw(t,L); lnL for long times.

For a rough substrate we haveCq,q8(t0)Þ0 and it is im-
possible to obtain a general scaling relation such as Eq~9!
for any initial substrate. For example, in an uncorrela
growth process@n50 in Eq. ~5!# the correlation is given by

Cq,q8~ t0!5~2p!dDt0 ~10!

and Eq.~6! cannot be expressed as a scaling relation.
Nevertheless, if the correlation function has the fo

Cq,q8(t0);q22, then it is possible to write down a scalin
relation similar to Eq.~9!. A substrate with such a correlatio
function can be generated by the same growth process~5! on
a flat substrate. In that case, we use a coefficientn0 until the
time is long enough (t@Lz). Under these conditions, Eq.~7!
reads

Cq,q8~ t0!5
~2p!dD

2n0q2 dd~q1q8!. ~11!

By substituting this equation into Eq.~6! we obtain

w0
2~L !5

D

2dn0pd/2GS d

2D E2p
L

` dq

q32d
. ~12!

Therefore, once the process starts on a substrate gene
under those conditions, we find that the fluctuation in rou
ness

dw25uw2~ t,L !2w0
2~L !u ~13!

can be expressed as

dw25
D

2dpd/2GS d

2D U
1

n
2

1

n0
U E2p

L

` dq

q32d
~12e22ntq2

!.

~14!
d
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-

This relation is identical to Eq.~8! for flat substrates with
effective coefficientne f f defined as

1

ne f f
5U1n 2

1

n0
U. ~15!

Hence the same scaling relation is obeyed. Then, ford51
the scaling relation valid for this kind of substrate is

dw25
DL

ne f f
f S nt

L2D . ~16!

A similar scaling relation was obtained by Kerte´sz and Wolf
for the Eden model@24#. However, the Kerte´sz-Wolf relation
depends of the intrinsic roughness of the model that isL
independent, while in the present work the initial roughne
w0(L) grows withL.

In order to understand the above results we perform
simulation with a model of the same universality class,
so-called SOS model with surface relaxation, ind51. That
model was introduced by Edwards and Wilkinson@15#, who
determined the exponents analitically. Family@18# obtained
numerical results that support the scaling relation~4! with
the same exponents. A sitei is select at random and it
height hi grows one unit, that is,hi→hi11, provided that
the restriction on neighboring heightshi2hi 61,m is
obeyed at all stages. In this constraint,m is a parameter
related to the coefficientn. In case the constraint is violated
the lowest neighboring site is visited until a local minimu
is reached. A substrate is generated by this process by u
a valuem0 until a steady state (t@Lz) is attained. On that

FIG. 1. The log-log plots of the roughnessw(t,L) as a function
of t for L5200. In both parts, we show the growth process in a
substrate form51 ~lower curve! and form55 ~upper curve!. On
the top roughening processes fromm51 to m55 and on the bot-
tom smoothening processes fromm55 to m51 are described. The
segmentsa, b, c, andd show the behavior when we change th
parameterm at timest530, 300, 3000, and 30000, respectively.
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substrate another growth process will begin with anot
maximum height differencemÞm0. The change in the pa
rameterm corresponds to a change in the coefficientn. For
instance, a low value ofm means a less rough substrate, th
is, a higher value of the coefficientn.

Figure 1 shows log-log plots of the roughnessw(t,L) vs
time t for L5200. The lower~upper! curves are form
51 (m55). The segmentsa, b, c, andd on the top de-
scribe the roughening fromm51 to m55 at different times.
The segments on the bottom describe the smoothening
cessesm55 to m51. We note that there exists a tenden
of the roughness to go quickly to the corresponding curve
the new value ofm. Even for the smoothening process t
segmenta shows a strong decreasing of the roughness
then it returns to the ascending curve.

Figure 2 shows the absolute value of the fluctuations
roughnessdw vs time t for two growth process:~a! rough-
ening, a process withm55 on a less rough substrate gene
ated with m051, and ~b! smoothening, a process withm
51 on a very rough substrate generated withm055. For
each one, we have generated 30 substrates and 30 gr
processes for each substrate. Hence we used effectively
samples. The results shown are forL5800. The curves are in

FIG. 2. The log-log plots of the fluctuation in roughnessdw as
a function oft in two process:~a! roughening~lower curve! ~in an
L5800 less rough substrate, generated withm51, grows a struc-
ture with m55) and ~b! smoothening~upper curve! ~in an L
5800 very rough substrate, generated withm55, grows an inter-
face withm51.
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good agreement with 2b50.4860.02 for roughening and
2b50.5160.03 for smoothening, which indicatesb'1/4,
as expected. The validation of the scaling relation~16! can
be inferred from Fig. 3: Plots ofdw/L1/2 vs t/L2, for sev-
eral values ofL, collapse on the same curve, which indicat
that f (x) is L independent.

In conclusion, we analyze the kinetic roughening on
initially rough substrate. Through a solution of a linear d
fusion equation we show that it is impossible to obtain
general scaling relation as such Eq.~9!, which is valid for flat
substrates. Nevertheless, for a particular substrate gene
by the same linear process but with a different coefficientn,
we can write down a similar scaling relation~16! which is a
generalization of Eq.~9!. It is possible to study analytically
other models that are related to a linear equation of hig
order @19,20# and to obtain similar results. Numerical simu
lations in a SOS model with surface relaxation, where a d
ferencem of height between neighbors is allowed, indica
the correctness of this scaling relation. We also perform
merical simulations in a SOS model with refuse@25# to see
the results of a nonlinear model on a rough substrate.

We thank Joa˜o Florêncio, Jr. and Bismarck Vaz da Cos
for helpful criticism of the manuscript. This research w
supported in part by Conselho Nacional de Desenvolvime
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FIG. 3. Plots ofdw/L1/2 vs t/L2 for various values ofL show-
ing the validation of the scaling relation~16!.
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